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Abstract

Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace trans-
form based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solu-
tions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower
bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory.
Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T2 log-mean, and bound
fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical
considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density mod-
els. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and
elsewhere.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

NMR signals of T2 decay are routinely recorded in
well logs to characterize the porosity, permeability,
and saturation of the rock formations [1], and are cen-
tral in many laboratory measurements for the evalua-
tion of porous rocks [2]. A key quantity of interest is
the rate of T2 decay of the signal amplitude as the pre-
cessing protons interact with their environment during a
CPMG experiment [3,4]. The signal amplitude M as a
function of time t after the first pulse is well approxi-
mated by a positive sum of exponential decays, which
is usually written as an integral

MðtÞ ¼
Z 1

0

F ðT Þ expð�t=T ÞdT ð1Þ

integrating over T, the characteristic relaxation times
of the decay mode selected by the initializing pulse
train; F (T) is the number density of protons with
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relaxation time T. There can be a direct relationship
(see [1]) between the spectrum of pore sizes to the
density spectrum F. But F is not measured; only M

is known, and so F must be recovered from this
signal.

Eq. (1) is effectively a Laplace transform. IfM(t) were
known exactly on any dense set of t, Lerch�s theorem [5]
states that F is uniquely determined by M. Fig. 1 illus-
trates why Lerch�s theorem is inapplicable: it shows a
typical NMR record from the Schlumberger NMR log-
ging tool [6], a record used for illustration throughout
the paper. Data sets like this one are collected every
0.75 ft in wells that can be many thousands of feet deep
(see Section 4.3). Each such record comprises 5000 sam-
ples of M taken at intervals of 200 ls, a significant num-
ber of data, but not a continuous function. Since F is
nonnegative, Eq. (1) shows that M must be positive
and decrease monotonically toward zero, yet the ob-
served signal is neither positive nor monotonic because
of measurement noise. Since the observed data cannot
match Eq. (1) exactly, what can be learned about F from
the measured version of M?
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Fig. 1. Typical amplitude record from the Schlumberger NMR logging tool at a single depth in a well. The signal comprises 5000 samples spaced at
an interval of 200 ls. This record will be used as a basis for illustration in the calculations.
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The standard solution [7–11] to the modeling of F is
by means of a regularization which generates a unique
density function by minimizing

SðaÞ ¼
Xm
j¼1

Z 1

0

F ðT Þ expð�tj=T ÞdT �MðtjÞ
� �2

þ a
Z 1

0

F ðT Þ2 dT ð2Þ

over nonnegative functions F, and selecting the parame-
ter a in a somewhat subjective way. The rationale for the
method is that in Eq. (2) the first term represents a mea-
sure of model misfit and the second model complexity,
both undesirable qualities. The two properties, misfit
and complexity, are in conflict and cannot both be made
arbitrarily small simultaneously, and so by suitable
choice of a, a satisfactory compromise is sought. This
kind of regularization provides a plausible density func-
tion from which other quantities of interest can be calcu-
lated, but it is silent on the question of the range of
satisfactory alternative solutions.

An alternative to regularization that does provide
uncertainty information is the Bayesian formulation
[12,13] but this approach uses a statistical characteriza-
tion of the density function and an assumption of a
prior distribution that we wish to avoid. The associated
computational effort can also be quite extensive.

We investigate properties of the set of all models
matching the measurements to a specified degree, a
much wider class than that of traditional regularized
models. If the modeling assumptions and approxima-
tions are valid, these must be properties of the true den-
sity spectrum and therefore constitute firm information
about it. This cautious approach has been developed
by Parker [14] for a variety of geophysical inverse prob-
lems. Notice that the value F (T0) at any particular T0 is
not constrained by the available measurements, unless
further smoothness assumptions are made about F (T).
On the other hand, we will see that linear functionals
of F like

Iwða; bÞ ¼
Z b

a
wðT ÞF ðT ÞdT ð3Þ
for 0 < a < b < 1 and bounded functions w P 0, must
lie within strict limits imposed by the values of the
observations. Functionals related to Iw, such as the
T2 log-mean, are central to NMR well-log interpreta-
tion and therefore we will concentrate on these
functionals.

Because of measurement error, the acceptable degree
of mismatch between data and the predictions of a den-
sity model must be formulated statistically, based on a
model of the measurement noise. Fortunately, the sys-
tem noise in NMR closely approximates an ideal of zero
mean, uncorrelated Gaussian random additive noise,
which makes its characterization relatively simple. Since
a random element is necessarily present, any conclusions
we draw must be framed in terms of probabilities, not
absolute certainties.
2. Optimization theory

We introduce the set of models X that are said to be
compatible with a given decay record. Then we examine
the question of deciding whether there are such models.
This turns out to involve a well-known form of qua-
dratic programming, nonnegative least squares (NNLS),
which is the solution to the conventional least-squares
problem with the additional condition that every com-
ponent of the solution vector must be nonnegative. Once
we know models exist, we can discover common proper-
ties of the members of the set. We show how to find the
uncertainties in several important linear functionals of
the density and of certain interesting quantities defined
by ratios of linear functionals. Each of these calculations
can be mapped into a form that can be solved with the
algorithm for NNLS.

2.1. The set of adequate models

The range of relaxation times T encountered is so
large that common practice displays results on a log
time axis; we follow the same convention in the theory
and introduce the log time k = lnT. Then
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MðtjÞ ¼
Z 1

�1
eF ðkÞ expð�tje�kÞdk; ð4Þ

where eF ðkÞ ¼ F ðekÞek. We use the abbreviation

GjðkÞ ¼ expð�tje�kÞ: ð5Þ
In the log domain the kernels Gj are shifted versions of
the same function of k: the continuous version of Eq. (4)
is a convolution in log time.

We define a set X of density functions as those eF
obeying

v2 ¼
Xm
j¼1

1

r2
j

Mj �
Z 1

�1
eF ðkÞGjðkÞdk

� �2
6 X 2

0

and eF P 0; ð6Þ

where rj is the standard error of the measurement made
at time tj. The expression on the left of Eq. (6) will be
recognized as the model�s misfit statistic v2. For an
appropriate choice of X0 we will say that the set X con-
tains models that match the measurements satisfactorily;
in other words when eF 2 X, the function eF fits the data.
We will return to the question of how to determine X 2

0 in
Section 3. Notice the case of noise-free measurements is
covered in Eq. (6) by setting X 2

0 ¼ 0 and rj = 1.
First, we address the existence of solutions: Are there

any models at all fitting the data? Systematic errors or
unusually low signal environments can cause a failure
of the model equation (see Section 4.3); we must detect
this situation, because then we will not be able to make
valid inferences about eF . As a first step we construct the
best-fitting solution, eF 0: we solve

eF 0 ¼ argmin
FP0

Xm
j¼1

1

r2
j

Mj �
Z 1

�1
eF ðkÞGjðkÞdk

� �2
: ð7Þ

If the minimum value is less than the adopted X 2
0, there

are models, otherwise the set X is empty.
Mathematically, Eq. (7) presents a problem in semi-

infinite quadratic programming; the proper setting for
which is NBV, the normed space of functions of
bounded variation; the integrals must to be written as
Stieltjes integrals, since the minimizing elements are
not ordinary functions, but delta functions. Readers
interested in setting up a rigorous treatment of the con-
tinuous time problem should consult Luenberger [15].
Here however, we will replace the integrals by sums in
a finite-dimensional version. In obvious matrix notation
Eq. (7) becomes

f0 ¼ argmin
fP0

kR�1ðm� GfÞk2; ð8Þ

where the norm is the Euclidean norm; the matrix
G 2 Rm�n is composed of rows sampling the function
Gj (k) at n evenly spaced points with kmin 6 k 6 kmax;
R 2 Rm�m is the diagonal matrix of standard errors;
f 2 Rn is a vector representing the unknown density

e

function, sampled in k in the same way as the rows of
G; and m 2 Rm is the vector of amplitude measurements.
The integral over the real line has been replaced by a fi-
nite sum, and so values must be provided for kmin and
kmax, lower and upper limits for the permitted relaxation
times. Obviously in practical computations the number
n must be chosen to be much smaller than the actual
number of protons involved.

Eq. (8) is a convex optimization problem, and there-
fore there are no spurious local minima [15]. It is an
example of a quadratic program called nonnegative least
squares (NNLS); see Lawson and Hanson [16]. We will
transform all the numerical optimizations encountered
later on into NNLS problems, because the numerical
algorithm for NNLS is fast and stable. At the minimiz-
ing vector, f0, the Kuhn–Tucker conditions [17] require a
solution with no more than m positive components; in
principle n � m (the number of protons is much larger
than the number of observations) and so f0 consists of
at most m positive entries in a vector whose elements
are otherwise zeros. The positive components would be-
come delta functions in the continuous representation
Eq. (7). In calculations on well-log records like the one
shown in Fig. 1 the number of positive elements in f0
rarely exceeds ten. Further details of a numerical imple-
mentation will be described in Section 4, after we have
examined the statistical issues. Notice that within X
the best-fitting density function eF 0 is not given privi-
leged status, such as that of most probable candidate
model.

2.2. Bounding linear functionals

Having confirmed the existence of solutions by show-
ing that the smallest attainable misfit in Eq. (8) is less
than X 2

0, we can proceed to the investigation of proper-
ties common to all the densities in X. For example, an
important quantity determined from the NMR record
in wells is the local porosity, given by cM (0), the ampli-
tude at t = 0 times a calibration constant; see [1]. M (0)
cannot be measured directly, but from Eqs. (1) and (4)
it is

Mð0Þ ¼
Z 1

0

F ðT ÞdT ¼
Z 1

�1
eF ðkÞdk: ð9Þ

Our goal is to discover the range of permitted values of
M (0). To find the largest value consider

Mð0Þþ ¼ max
F2X

Z 1

�1
eF ðkÞdk: ð10Þ

The finite-dimensional version of Eq. (10) is the con-
strained optimization problem

Mð0Þþ ¼ max uTf ð11Þ

over vectors f 2 Rn subject to

e
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kR�1ðm� GfÞk2 6 X 2
0 and f P 0; ð12Þ

where u 2 Rn is the vector Dk [1,1,1, . . .1]T and Dk is the
spacing of the samples in k. The matrix G can be shown
to be of full rank, and hence Eq. (12) describes a
bounded convex region, the intersection of an ellipsoid
and the positive orthant in Rn, which is not empty by
hypothesis. For computation we convert the convex
optimization given by Eqs. (11) and (12) into an NNLS
problem.

Rather than maximizing the dot product in Eq. (11),
we use it as a constraint, along with positivity of f, when
we minimize the data misfit: with l P 0

X 1ðlÞ2 ¼ min
fP0

kR�1ðm� GfÞk2; subject to uTf ¼ l:

ð13Þ
Consider solving Eq. (13) for a series of values of l.
Every nonnegative density f must give rise to a point ly-
ing in the shaded region in Fig. 2; those in the shaded
region below the line v2 ¼ X 2

0 fit the data adequately. Be-
cause all the entries of G > 0, the value of X 2

0 increases
without bound as l tends to infinity, and since X1(l)

2

is continuous, the curve must intersect X 2
0; the largest va-

lue of l for which X 1ðlÞ2 ¼ X 2
0 is the upper bound on

uTf =M (0) for all f in X. In practice the curve is mono-
tonically increasing away from its minimum (which is at
l = uTf0) as illustrated in Fig. 2. Hence to bound M (0),
we solve the equation X 1ðlÞ2 ¼ X 2

0 with l > uTf0, and
the root is M (0)+, the desired upper bound on M (0).

Numerically, the constrained optimization problem
in Eq. (13) can be solved by taking the equality con-
straint into the penalty, as a heavily weighted row: we
solve

Z1ðlÞ2 ¼min
fP0

½kR�1ðm� GfÞk2 þ W 2ðuTf � lÞ2� ð14Þ

¼min
fP0

R�1G

W uT

" #
f � R�1m

W l

" #�����
�����
2

: ð15Þ

Here W is a fixed positive weight, large enough to insure
almost exact satisfaction of the constraint condition; the
optimal f for Eqs. (14) and (15) solves (13) too. As Law-
Fig. 2. Data misfit as a function of the constraint parameter l in Eq.
(13). The shaded region corresponds to solution vectors obeying f P 0
and uTf = l.
son and Hanson [16] observe, proper weighting can
achieve solutions as accurate as those found by tech-
niques that enforce linear equality constraints. Observe
that Eq. (15) is in the form of NNLS.

The greatest lower bound, M (0)�, is found in the
same way, but by searching in 0 < l < uTf0. The only dif-
ference is that X1 (0)

2 might be less than X 2
0, in which

case M (0)� is zero. In this way we have obtained best
possible values for the limits in M (0)� 6 M (0) 6M (0)+

for all density models in satisfactory agreement with the
measurements: this is a statement of the uncertainty in
our knowledge of M (0).

Exactly the same ideas work for other linear func-
tionals of eF . For example, we can determine the interval
containing smoothed versions of eF , a variant of the
analysis of resolution introduced by Backus and Gilbert
[18]. We average the density over the interval (k � d,
k + d)

heF ðkÞi2d ¼ 1

2d

Z kþd

k�d

eF ðlÞdl: ð16Þ

This is a bounded linear functional of eF , and thus upper
and lower bounds can be computed for it at each k just
as we found those for M (0). In this way we can discover
the corridor of permitted values of the smoothed func-
tions heF ðkÞi2d; the quantity 2d is the resolution of the
smoothed models.

2.3. Bounding ratios of linear functionals

Another number commonly used in well-log interpre-
tation derived from the density eF is s, the T2 log-mean,
which measures the logarithmic center of mass of the
density

ln s ¼
R1
�1 keF ðkÞdkR1
�1

eF ðkÞdk ¼ bðeF Þ: ð17Þ

We would like to place bounds on b, and hence on s,
but because b is a ratio, it is not a linear functional
of eF nor even a convex one. Nonetheless, the same ap-
proach used for calculating bounds on M (0) is effective
here also. Rather than treating b in Eq. (17) as the
objective function in an optimization problem, we de-
clare it to be a constraint when we minimize the misfit
function. As a constraint Eq. (17) becomes linear after
we rationalize

b
Z 1

�1
eF ðkÞdk ¼

Z 1

�1
keF ðkÞdk: ð18Þ

In matrix form we must solve the optimization problem

X 2ðbÞ2 ¼ min
fP0

kR�2ðm� GfÞk2; subject to buTf ¼ lTf

ð19Þ
or, with heavy weighting to apply the linear constraint,
the NNLS problem with the same solution vector:
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Z2ðbÞ2 ¼ min
fP0

R�1G

W ðbuT � lTÞ

" #
f � R�1m

0

" #�����
�����
2

: ð20Þ

Here l 2 Rn is the vector of sampled values of the func-
tion k. As with M (0), we sweep through values of b,
seeking the intersection of X2 (b)

2 with the target misfit
X 2

0: the smaller solution corresponds to b�, the greatest
lower bound on b, and the larger one to the least upper
bound, b+; and from Eq. (17) we may conclude:
s� = expb� 6 s 6 expb+ = s+.

A complication arises in the case of the lower bound,
however. In the continuous version of the problem there
is no finite lower bound on the value of b for the mem-
bers of X because it is always possible to add to any den-
sity adequately fitting the observations a component
with a very large amplitude, but at very small k. In this
way we can arrange for b to be arbitrarily small while
the model misfit is essentially unchanged owing to the
vanishingly small amplitudes of all the kernels Gj when
k is small enough (see Eq. (5)). This behavior corre-
sponds to a high density of protons with very rapid
relaxation rates whose presence will not show up in
the data because, by the time the first echo is measured,
their signals have all vanished. Thus, based on the mea-
surements alone, there is no positive lower bound on s.
In the finite-dimensional version the difficulty is evaded
by assigning kmin, the lower cut-off in the sampling of
the k axis. A plausible default value for kmin might be
the log of the shortest measured T2, but as we would ex-
pect, the choice of the cut-off has a decisive influence on
the lower bound in s. It is sometimes possible to estimate
kmin on the basis of geological knowledge (prior infor-
mation), and when this can be done it may improve
the s� considerably; see Section 5.

Finally, the bound fluid volume fraction below a cer-
tain critical relaxation time can be estimated from eF via
integrals in the form

CðT cÞ ¼
R1
�1 KðT c; kÞeF ðkÞdkR1

�1
eF ðkÞdk ; ð21Þ

where the function K (Tc;k) is constant up to k = lnTc

then drops abruptly to zero, or decays smoothly after
that; see Kleinberg and Boyd [19]. These quantities
can be bounded in exactly the same way as s. The upper
bound of C is subject to the same problems as those on
s�, but since the kernel function K is constant for small
enough k the effect is not as severe.
Fig. 3. Autocorrelation function for the series of normalized first
differences Vj = Y2j/r2j based on data shown in Fig. 1. The series is
essentially uncorrelated, as predicted by the noise model.
3. Noise and statistics

The signal is contaminated by noise of considerable
magnitude. To accept or reject a density model as an
adequate predictor of the observations requires a statis-
tical basis. First, we need a mathematical model for the
noise, and then we must have a theory for testing the
models we calculate.

3.1. Characterization of the measurement noise

A standard mathematical model for the noise consists
of additive, zero-mean, uncorrelated Gaussian random
variables. This choice is supported by laboratory exper-
iments on the instrumentation, and by a ‘‘noise channel’’
collected during the logging; it will be confirmed by tests
on the record itself. To use Eq. (6), we need a value for
rj, the standard error of the noise at the jth signal point,
or echo. We must allow for r to vary slowly in time (see
Fig. 1), an effect due to processing to correct for the mo-
tion of the tool. Assume that r increases linearly with
time so that for CMR signals we can write

rj ¼ r0 þ ðj� 1Þj; ð22Þ
where the parameters r0 and j are obtained from the re-
cord. One approach would be to find the best-fitting the-
oretical model and subtract it but, as discussed in
Section 3.2, the resultant noise estimate would be biased
downwards. Instead we form first differences

Y j ¼ Mðtjþ1Þ �MðtjÞ; j ¼ 1; 2; . . . ;m� 1: ð23Þ
Anticipating the numerical results, we find that r lies be-
tween 35 and 50 U, and M (0) = 350. Then the variance
of Yj is about 2r2

j P 2450, while the signal component is
the drop between consecutive echos, on average (350/
5000)2 = 0.005, utterly negligible in comparison. Thus,
the first differences are essentially pure noise. However,
the variables Yj are correlated, even when the noise in
M (t) is not. We can get an uncorrelated set by deleting
every other one, wasteful, but in view of the large num-
ber of observations, not a serious loss. Now r0 and j can
be estimated from the Yj series using the method of max-
imum likelihood [20]; we omit the details.

For the signal shown in Fig. 1 we find r0 = 36.1 and
j = 3.76 · 10�3, so that in the 1-s record the noise in-
creases by about a factor of 1.5. The noise model pre-
dicts the normalized differences Vj = Y2j/r2j � N(0,2)
and that Vj should be uncorrelated. We test these predic-
tions. Figs. 3 and 4 show the autocorrelation function of



Fig. 5. Best-fitting density model f0 found by solving Eq. (8). The
dashed line is the solution regularized by Eq. (2) with the expected
misfit. See Section 4 for details.

Fig. 4. Q–Q plot and histogram of standardized first differences Vj

calculated from record in Fig. 1. The comparison distribution isN (0,2).
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normalized first differences, obtained by Fourier trans-
forming the power spectrum [21]; the calculated correla-
tion is negligible. To check the distribution of the
normalized differences we calculated the quantile–quan-
tile or Q–Q plot [20] and histogram shown in Fig. 5,
which perfectly verifies the Gaussian distribution. The
Kolmogorov–Smirnov statistic [22] confirms there is
no significant departure from the Gaussian probability
density function: P (dN > 0.0132) = 0.78.

3.2. Expected misfit of best-fitting model

Now we are in a position to compute the best-fitting
model, by solving Eq. (8). As we have already noted,
the quantity being minimized is the familiar misfit mea-
sure, v2. How large should v2 be? Naively we might say
that its expected value (statistically) must be m, the ex-
pected value of the sum of the squares of m standard-
ized Gaussian random variables. But we have
deliberately sought the model with the smallest possible
misfit which must result in a downward bias. If the fit
were a linear least-squares problem with P parameters
to be estimated, it is well known [21] that the expected
v2 is reduced by the number of degrees of freedom, P,
giving E [v2] = m � P; further, the misfit itself is distrib-
uted according to v2m�P . Ours is not a simple linear
problem because of the positivity constraint, and more-
over, P > m since there are far more free parameters
(the number of protons, or in the continuous approxi-
mation, infinitely many) than measurements. As we
noted Section 2, the solution vector of the NNLS prob-
lem contains no more than m positive components, and
empirically, in the limit of large n, the model tends to a
definite function with a finite number of peaks, say
p 6 m. Fig. 5 shows the result for our standard exam-
ple, where p = 4. It requires 2p parameters to specify
such a model, one each for the amplitude and the loca-
tion of the peak; we propose that the effective number
of degrees of freedom is P = 2p. Then the expected va-
lue of misfit is m � 2p, and the variance 2m � 4p. This
guess is based on the idea that near the true solution,
the system behaves linearly under small perturbations.
We tested the conjecture with a Monte Carlo simula-
tion, adding pseudo-random Gaussian noise to the sig-
nal from a known spectrum, then solving Eq. (8): the
results correspond well to the predictions both in mean
and variance.

It should be noted that in actual calculations the
number of fitted observations is typically 120, consider-
ably fewer than 5000. The measurements are aggregated,
or binned, to reduce computational work; see Section 4.

3.3. Testing models against observation

If we accept the conjecture, we can settle the existence
question by comparing the minimum misfit found by
solving Eq. (8) with m � 2p; given that the variance of
the smallest misfit is 2m � 4p, we may reject the model
if the probability of matching or exceeding the observed
value by chance is too large. In that case something in
the theoretical edifice is inconsistent with observation.
One option is simply to go on to the next record. Alter-
natively, one might wish to repair the model in some
way, and the most tractable candidate for modification
is the noise model. In many situations, noise closely
approximated by a Gaussian process is mixed with a
process that adds very occasional events with large
amplitude, outliers. A quadratic misfit measure like v2

gives outliers considerable weight due to squaring, even
though they are the least reliable sources of information.
Therefore, a common strategy [23], which we adopt, is
to delete the largest deviating data if their misfit forces
v2 above an acceptable level. Removing one or two mea-
surements out of 120 is a minor modification of the data
set. When, as sometimes happens, more than a few dele-
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tions are required, it is best to reject the record as incom-
patible with the theory.

The next question is the choice of target misfit, X 2
0 in

Eq. (6) or Eq. (12), the definition of an acceptable den-
sity function. If we choose X 2

0 ¼ m, which is the expected
value given m observations, then roughly 50% of the
time the true signal will have a larger misfit than the
one assigned. It would be unwise to draw conclusions
about eF from X when the actual density function be-
longs to that set only half the time. To be reasonably
certain that the proper density belongs to the set we
must choose X 2

0 larger than m. The chi-squared distribu-
tion of misfit can be employed to calculate the of value
X 2

0 that includes the actual misfit with a probability PX

say 0.9 or 0.99. Notice, however, that bounds on func-
tionals like M (0) based on the value 0.99 do not corre-
spond to the standard 99% confidence interval forM (0).
We have not made a statistical estimate of M (0) itself.

To clarify the issue consider the situation illustrated
in Fig. 6, where bounds on M (0) have been computed
at a series of depths. Imagine that exactly measured
amplitude values were also available. A finite set of ex-
act amplitudes does not meet the conditions of Lerch�s
theorem, and so even with such measurements we can-
not calculate the true M (0) at each depth, only strict
bounds such that M (0)� 6M (0) 6M (0)+. Here the
bounds M (0)� and M (0)+ are exact numbers. When
noise contaminates the measurements, those numbers
are replaced by statistical estimates. Thus when
PX = 0.99 we expect that 99% of the time the estimated
Fig. 6. Because of observational noise, the bounds found by the
optimization are themselves noisy and, depending on the choice of PX

are incorrect a certain fraction of the time. A value of PX = 0.99 does
not generate a 99% confidence interval for M (0).
bounds will encompass the bounds generated by precise
measurements, but run inside them (that is, be in error)
1% of the time. Contrast this with the conventional 99%
confidence interval for M (0), where the true value of
M (0) itself will lie within the limits 99% of the time.
4. Applications

To build a practical program from the theory we need
to set a number of parameters. The use of Eqs. (8) and
(12) requires a sampling scheme for k. The interval of k
should at least cover that of lnT in the observations: ini-
tially, we take k 2 (lnTmin, ln10Tmax), although the low-
er limit may be raised if there is reason to believe short
relaxation times are largely absent. To create the solu-
tion vector f 2 Rn, the interval is sampled uniformly in
k. Usually we set n = 150. In theory, the larger n, the
more accurate the computed results, but there is no sig-
nificant improvement for values above 150; in fact,
n = 60 yields results typically only a few percent differ-
ent from those found with 150.

It might appear we have no choice about m, the num-
ber of measurements. However, a common practice [24]
is to bin the observations, that is, group them into sets
of k consecutive values, taking the mean of the group,
and presenting the mean as the datum to be matched;
the uncertainty of the mean is decreased by the factor
k1/2. Furthermore, the size of the group varies along
the record, getting bigger exponentially for later times
(log binning), in this way preserving higher resolution
of early times dominated by rapid decays. The purpose
of this procedure is to reduce the size of the matrix
G 2 Rm�n and the concomitant computational costs.
We have followed this practice, normally reducing m to
120, excluding the first 20 echos from the binning. We re-
mark that matrix size in the NNLS calculations can also
be reduced without the approximation of binning by pre-
liminary use of the QR factorization [16] of R�1G.

4.1. Minimum misfit

For the first example, we analyze the record of Fig. 1.
The reduced data set after log binning is shown in Fig. 7;
the first 20 echos are taken individually to retain the
highest possible resolution in time, the rest (100 groups)
grouped together into sets of increasing size, ranging
from one member up to 272. The total number of data
in the reduced set is 120. As can be seen in the figure,
log binning generates data with approximately constant
relative error in the tail. The best-fitting density is com-
puted from the reduced set by solving Eq. (8) and
v2min ¼ 128:2. The number of positive components,
p = 5, and so the expected value for the misfit is
120 � 10 = 110 according to the conjecture of Section
3. Is that misfit acceptable? The probability of so large
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a misfit is 0.11, which we regard as too small (our cut-off
is 0.2). The strategy described in Section 3.2 prescribes
removal of the worst fitting points until the misfit is
acceptable: we delete the two biggest contributors to
the misfit, the points indicated in Fig. 7 which, if the
model were unchanged, would reduce v2 to 116.7; but
we must recompute the value with new data set. Now
the best-fitting model achieves v2min ¼ 115:7, but with
p = 4 and m = 118, so that the expected value is 110.
The probability of v2 P 115.7 is 0.34, which satisfies
the acceptance criterion. The best-fitting density with
four positive elements has already been plotted in Fig.
5; the corresponding signal is shown as the smooth curve
in Fig. 7.

In support of the conventional form of regulariza-
tion, which penalizes the solution 2-norm, it is some-
times asserted [1,3] that optimal solutions (comprised
of delta functions) are unphysical, from which it would
follow that the set X is too large, and ought to be further
restricted. We argue that smoother models can achieve
almost the same values of bounded parameters as the
extremal solutions. For example, we have already com-
puted a bound: the smallest possible chi-squared misfit.
How much larger would the demand of smoothness
make that bound? To avoid an elaborate calculation
we simply convolved the best-fitting solution with a
smooth template, and computed chi-squared for result-
ing densities. Two examples are shown in Fig. 8; the in-
crease in misfit is 1.3% for the solid curve and 6.1% for
Fig. 8. Minimum misfit solution shown in Fig. 5 convolved with two
smoothing functions to map them into ordinary continuous densities.

Fig. 7. Binned data set with ±1-r uncertainties. The two outliers
shown must be removed to attain an acceptable fit to the model
equation. Best fitting solution generates the smooth amplitude curve
with v2 = 115.7, and n = 118. Note both axes are logarithmic.
the dashed one. In our judgement, these two functions
are perfectly physical yet the increase in chi-squared is
trivial in one case, and modest in the other. We conclude
that attempting to restrict attention to a class of smooth
models would improve the bounds only slightly, at the
expense of introducing a standard of solution accept-
ability that is difficult to justify or quantify.

4.2. Bounds on the T2 log-mean

Next we illustrate the bounding of useful functionals
of eF . We focus on the estimation of upper and lower
bounds of s, the T2 log-mean of the distribution, given
by Eq. (17). Again the measurements of Fig. 1 will be
used, having first been binned and edited as shown in
Fig. 7. A series of solutions to the NNLS problem in
Eq. (20) must be found for trial values of s, to secure
a match between X2 (lns)

2 and X 2
0. First, we need a value

for W, the factor applying a heavy weight to equality
constraint; we insure that the norm of the heavily
weighted row is 1000 times larger than that of any row
in R�1G; Lawson and Hanson [16] suggest a value of
roughly g�1/2, where g is the relative computer precision,
in our calculations about 10�14. We have chosen a smal-
ler number because making W too big risks numerical
instability; another stabilizing device is to put the con-
straint row first, rather than last as shown in Eq. (20),
because of the way the computer code uses QR transfor-
mations. Next the target misfit X 2

0 must be assigned,
which governs the size of the set X. As discussed in Sec-
tion 3, we choose a value to give a reasonably high
chance of including the misfit of the true signal. A prob-
ability PX = 0.9, with m = 118 (recall we deleted two of
the original 120 reduced data), gives X 2

0 ¼ 138:06 from
the chi-squared distribution.

The situation for our data set is shown in Fig. 9. The
upper bound is 810.9 ms and the lower bound 6.50 ms.
The very steep gradient of misfit at the right means that
the bound is almost indifferent to the choice of probabil-
ity; when PX = 0.99, X 2

0 ¼ 156:66 which raises s+ by
only 3.25%, to 836.2. The lower bound is more sensitive:
Fig. 9. Data misfit as a function of s = expb in Eq. (20). Misfits less
than 138.06 are acceptable with a probability of 0.9. Note both axes
are logarithmic.



Fig. 10. (A) Upper and lower bounds in milliseconds on T2 log-mean
from T2 NMR data taken with the Schlumberger logging tool in a well
drilled through a carbonate sequence; the white line is s calculated
from the best-fitting model. The lower cut-off of decay times is 0.4 ms
and PX = 0.9. (B) Zero-time amplitudes from the best-fitting solutions
and estimate porosity; the two curves correspond to models with the
cut-offs of 5 ms and, shown dashed, 0.4 ms. (C) Same as in (A) but
calculations are based on the 5 ms lower cut-off. Depth scale in feet.
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s� becomes 4.178, a decrease of 36%. Sensitivity in s� is
not surprising, because s� is not determined by the mea-
surements alone, but depends on the choice of the lower
log-time cut-off, kmin. For either choice of PX this is a
wide interval, indicating that the observations are con-
sistent with a great range of T2 log-mean values. An-
other choice is the level at which to reject outliers in
the preliminary data screening; for routine processing
we have adopted a relatively harsh standard, deleting
misfits that might arise 20% of the time by chance. If
we accept instead both the rejected points indicated in
Fig. 7, the bounding interval shrinks: s� becomes 10.9
and s+ 795.8, with the lower bound being much more
sensitive as we would expect. Rejection of the outliers
leads to a more conservative bound in each case, consis-
tent with our generally cautious approach.

A mathematical purist will say that the lower bound
on T2 log-mean is simply an unsuitable quantity for esti-
mation, and that one ought not to attempt the impossi-
ble. Nonetheless, a value is desirable for petrophysical
analysis. A potential solution to the dilemma is to intro-
duce information from outside the set of T2 relaxation
measurements. One option is to restrict even further
the k interval for modeling. We know from the geology
of the site that the well is drilled in a carbonate se-
quence, and that carbonates cannot exhibit such short
decay times as implied by the s� density model, where
most of the protons have decay constants of 400 ls.
We might move the lower cut-off in T up a decade to
5 ms on the basis of this expectation. With PX = 0.9,
the lower bound increases sharply to 237.2, a factor of
36 increase, while the upper bound is essentially unal-
tered. The risk is that we are substituting an assumption
for a measurement that we do not have, yet we tend to
invest subsequent conclusions with the same status as
those founded on genuine observations.

Another possible source of information is porosity,
which is oftenmeasured independently by nuclear physics
techniques [25]. Porosity provides a value forM (0), which
can act as a constraint through Eq. (9). It might be sup-
posed that, because the solution regularized by (2) has
been observed to track porosity quite accurately, one
could apply theM (0) obtained as a constraint, or perhaps
even the value of M (0) associated with the best-fitting
solution. Both these estimates are derived from the
NMR record, not outside information, and agreement
between the regularized porosity and the true one, for
example, must result from the absence of small T terms;
that fact cannot be inferred from the T2 data themselves.

Yet another strategy for improving the lower bound
is to modify the misfit criterion, to apply more weight
to the earliest echos. Measurements at early times influ-
ence the lower bound much more than the later ones and
with chi-squared, their misfits are systematically larger.
Various weighting schemes were investigated. Even in
the simplest case, which involves multiplying the first
term in the sum for v2 by w1 > 1, the definition of PX re-
quires a nonstandard probability distribution found
numerically or by asymptotic analysis. We omit the te-
dious details, and report that the increases in the lower
bound obtained by this approach were all fairly modest,
usually a small fraction of what can be realized by a
change in kmin, for example. It is unrealistic to expect
mere adjustment in the fitting process will be capable
of curing a fundamental problem, the fact that b� is
not bounded below if Eq. (17) is used.

4.3. A longer section

Fig. 10 shows the results of calculations under two
parameter settings performed on series of 439 records
measured in a 332 ft section of a well drilled in car-
bonates. The record shown in Fig. 1 used throughout
for illustration comes from the depth 8550 ft in this
series.

With a larger data set we can examine some questions
not amenable to test with a single record. For example,
in standard analysis of T2 data, the first echo at 200 ls is
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often discarded because of suspected systematic instru-
mental effects. We confirm the existence of an anomaly
by looking at the statistics of the residuals of the first
echo after subtracting the prediction of the best-fit solu-
tion. If the standardized residual is formed

Rkðt1Þ ¼
1

r1

Mðt1Þ �
Z eF kðkÞG1ðkÞdk

� �
; ð24Þ

where eF k is the best fit density of the kth record, under
the assumptions of the theory, we expect Rk to be drawn
from a Gaussian population with zero mean and vari-
ance one. From the 439 records we estimate the mean
of the population of Rk (t1) to be �1.309 and the stan-
dard error 0.958. The standard error of the mean is
0:958=

ffiffiffi
4

p
39 ¼ 0:0457. Thus the observed mean is more

than 30 standard deviations away from the predicted va-
lue, leading us to firmly reject the proposition that the
first echo conforms to the statistical model: it is biased
downward. In comparison the same calculations on
the second echo yield a population mean of �0.0408
and standard deviation 1.009, and similarly satisfactory
values for later signals. Based on this analysis, we have
always deleted the amplitude at 200 ls from the
observations.

The calculations for Fig. 10 were performed with the
following parameters. For each depth the original 5000
amplitudes were log binned, reducing the total number
for analysis to 120. Outliers were deleted from the data
if v2min was so large that it would be exceeded by chance
with probability 0.2; this is rather aggressive pruning.
The probability defining the target misfit X 2

0, was
PX = 0.9. The number of samples in k was 150. No addi-
tional weight in the misfit criterion was placed on earlier
echos. In panel (A) the bounds for s are based on a low-
er limit kmin = ln0.4, the log of the earliest time in the
record (that is 0.4 ms; the echo at t = 0.2 ms has been
deleted). Calculations for graph (C) used a cut-off of
5 ms, a figure based on the likely shortest decay time
to be found in carbonates. The choice of upper limit
kmax is set at ln10Tmax = ln104; making the upper limit
larger had no effect on the results, except in those parts
of the record (8620 < z < 8570 ft) where bounds on s
could not be established from the decay times, and then
the bound is supplied by the limit chosen.

The bounds on s in milliseconds are the outer lines in
graphs (A) and (C); the grey middle curve is the value of
s derived from the best fit model. In the center plot (B)
we show curves forM (0) from the best-fitting model, the
higher curve always resulting from the lower cut-off
kmin. As the reader will recall from Section 2, M (0) is
proportional to porosity. At the base of the section there
is an interval of low porosity, which causes the signal
amplitudes to become very small; the noise is not simi-
larly reduced, and so that the reliability of the models
degrades, something clearly reflected in the bounds,
which expand to the extremes allowed by the program.
For five records in this low porosity segment, the signal
to noise ratio was so poor that the best-fitting density
was the function zero. The very large uncertainties cal-
culated in the lower segment demonstrate that no reli-
ance can be placed on s in this interval.

In panel (A) the bounds on s are separated typically
by two decades. In (C), where the lower limit k has been
raised, the lower bound is usually a decade and a half
higher, while, the upper bound has not changed percep-
tibly. In no case did the assumption of the restricted
range in k cause a failure to model the measurements
(indicated by v2min so large that more than two data
points would have to be discarded), so the assumption
of a higher log time cut-off is completely compatible
with the observations. If it is true that in this formation
there are essentially no protons with T2 relaxation times
below 5 ms, we can confidently constrain s to a tight
corridor, except where the porosity is so low the mea-
surements become uninformative.

The code to perform these calculations, written in
Fortran, is quite fast: on a Sun Ultra 50 workstation
the 439 records were processed in 87 s for minimum mis-
fit and bounds on s, that is, about a fifth of a second
each.
5. Discussion and conclusions

It is a truism of quantitative science that a numerical
estimate for a quantity has little value unless it is accom-
panied by some idea of its accuracy. In this paper, we
describe a methodology for assessing the uncertainty
of relaxation-time density functions calculated from
geophysical NMR measurements. The theory gives a
range within which certain properties of the density
function must lie by exploiting the fact that the density
must be positive. The properties treated are bounded lin-
ear functionals of the density, and ratios of linear func-
tionals, and include all of the commonly used
diagnostics used for geophysical well-logging with
NMR, except the density function F (t) itself: we find
that the density for any particular decay time has an
arbitrarily large uncertainty.

A key consideration in the development has been re-
spect for the statistical aspects of the problem: statistics
are necessary because of the very significant random
component in the measurements, which cannot be ig-
nored. The usual regularization approach, in our opin-
ion, pays insufficient attention to these matters. On the
other hand, statistical assumptions about the density
function itself are not required in our treatment. We
have chosen a conservative approach to the uncertainty
problem: we wish to avoid assumptions about the
smoothness of the density or its statistical properties,
things that we believe are poorly determined, and whose
introduction will generate false confidence in the results.
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The mathematical techniques we use are those of opti-
mization theory in finite-dimensional spaces. In particu-
lar we appeal to the theory of quadratic programming of
positive definite forms, a subject with a fully worked out
theoretical basis. Furthermore, there are efficient and
stable numerical methods to implement the theory.

For illustration purposes we have concentrated on the
T2 log-mean, a logarithmic measure of the center of grav-
ity of the density distribution. We find that T2 log-mean
has no positive lower bound without the introduction of
some kind of additional assumption coming from outside
the set of NMR data themselves, an assumption such as
the exclusion of protons with decay rates faster than some
limit. If a lower cut-off in relaxation times can be reliably
assigned, by rock type, for example, this prior informa-
tion helps generate sharp lower bounds. Other potential
sources of information include porosity, although this
possibility has not been examined in detail. Constraining
the initial amplitude tomatch that of the regularized solu-
tion, or the best-fit solution, is equivalent to assuming the
absenceof smallT terms in the density, andwebelieve that
such an assumption is better made explicitly. In a section
of well-log data we find that without an assigned lower
cut-off in decay times, the range of permitted s values is
too large to be much use, but once a plausible value is
specified, the corridor of permitted values for s becomes
gratifyingly narrow, except in one zone, where the sig-
nal-to-noise ratio is apparently very poor. The ability to
identify unambiguously intervals where the NMR data
are completely untrustworthy is valuable in itself.

Uncertainties can be found for other interesting
quantities: in the geophysical NMR problem, we can
treat the bound fluid volume fraction, and porosity.
As we have seen, the same methods also permit the cal-
culation of uncertainty in a smoothed version of the
density function itself, something that will be most valu-
able in the analysis of laboratory NMR records, where
the signal-to-noise ratio is much higher than for field
measurements. Other possible applications to labora-
tory work include the ability to discriminate between
density functions possessing several peaks or only one.
These are topics for further research.
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